6 research outputs found

    PET Respiratory Motion Correction in Simultaneous PET/MR

    Get PDF
    In Positron Emission Tomography (PET) imaging, patient motion due to respiration can lead to artefacts and blurring, in addition to quantification errors. The integration of PET imaging with Magnetic Resonance (MR) imaging in PET/MR scanners provides spatially aligned complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this thesis, we form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality. The approach is practical, having minimal impact on clinical PET/MR protocols, with no need for external respiratory monitoring, using standard MR sequences and minimal extra acquisition time. First we validate the use of PET-derived respiratory signal to use for motion tracking, that uses raw PET data only, via Principal Component Analysis (PCA), then set up the tools to carry out PET Motion Compensated Image Reconstruction (MCIR). We introduce a joint PET-MR motion model, using one minute of PET and MR data to provide a motion model that captures inter-cycle and intra-cycle breathing variations. Different motion models (one/two surrogates, linear/polynomial) are evaluated on dynamic MR data sets. Finally we apply the methodology on 45 clinical PET-MR patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using Standardised Uptake Value (SUV) changes in avid lesions. Lesion detectability changes are explored with a study where two radiologists identify lesions or ’hot spots’, with confidence levels, in uncorrected and motion-corrected images. In summary, we developed a methodology for motion correction in PET/MR by using a joint motion model and demonstrated the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data, with one minute of extra scan time, and no external hardware

    Comparative evaluation of image reconstruction methods for the siemens PET-MR scanner using the stir library

    Get PDF
    With the introduction of Positron Emission Tomography - Magnetic Resonance (PET-MR) scanners the development of new algorithms and the comparison of the performance of different iterative reconstruction algorithms and the characteristics of the reconstructed images data is relevant. In this work, we perform a quantitative assessment of the currently used ordered subset (OS) algorithms for low-counts PET-MR data taken from a Siemens Biograph mMR scanner using the Software for Tomographic Image Reconstruction (STIR, stir.sf.net). A comparison has been performed in terms of bias and coefficient of variation (CoV). Within the STIR library different algorithms are available, such as Order Subsets Expectation Maximization (OSEM), OS Maximum A Posteriori One Step Late (OSMAPOSL) with Quadratic Prior (QP) and with Median Root Prior (MRP), OS Separable Paraboloidal Surrogate (OSSPS) with QP and Filtered Back-Projection (FBP). In addition, List Mode (LM) reconstruction is available. Corrections for attenuation, scatter and random events are performed using STIR instead of using the scanner. Data from the Hoffman brain phantom are acquired, processed and reconstructed. Clinical data from the thorax of a patient have also been reconstructed with the same algorithms. The number of subsets does not appreciably affect the bias nor the coefficient of variation (CoV=11%) at a fixed sub-iteration number. The percentage relative bias and CoV maximum values for OSMAPOSL-MRP are 10% and 15% at 360 s acquisition and 12% and 15% for the 36 s, whilst for OSMAPOSL-QP they are 6% and 16% for 360 s acquisition and 11% and 23% at 36 s and for OSEM 6% and 11% for the 360 s acquisition and 10% and 15% for the 36 s. Our findings demonstrate that when it comes to low-counts, noise and bias become significant. The methodology for reconstructing Siemens mMR data with STIR is included in the CCP-PET-MR website

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Gender-Specific Differences in the Central Nervous System’s Response to Anesthesia

    No full text
    corecore